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Abstract

This project is on the application of graphical models to the identification of vector autore-

gressive (VAR) models for given multivariate time series data.

When building a VAR model, we look to discover the causal structure of the variables.

These causal relationships can be derived from the variables’ conditional independence struc-

ture. In the context of graphical models, we first use the Inverse Variance Lemma to build a

conditional independence graph (CIG) from the sample covariance matrix of the multivariate

time series data. Nodes in this graph represent the potential variables in our VAR model, and

they are connected with an edge if they are significantly conditionally dependent. From this

conditional independence graph we achieve a directed acyclic graph (DAG) through demorali-

sation, reducing the number of edges in our graph and producing a set of possible DAGs. Such

DAGs represent the causal relationships between variables, and correspond to structural VAR

models. Fitting each of the models represented by these DAGs to data, we find the best one

using penalised likelihood methods.

In this project, we apply this methodology to simulated data, and find that we are able to

accurately and confidently recover the true model with the help of graphical models. Being

confident in the power of this methodology, we move on to apply it to multivariate financial

time series data, using the log returns of Standard and Poor’s 500 Index, Bond Index, and

GSCI Index at different time periods. The R code for the production of a CIG from time series

data is provided.
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Chapter 1

Introduction

When faced with time series data, it is interesting to identify structural relationships in our

data and ultimately leverage this information into building models for prediction. This paper

will investigate the application of ideas from graph theory to time series analysis on stationary

processes with the aim of discovering such dependencies between variables. By understanding

these relationships, we will be able to suggest an initial set of possible autoregressive models

to fit the data which we will then be able to prune down to a best model.

In order to develop the methodology required to so, we begin this paper by laying the prob-

abilistic foundations of independence and conditional independence between variables. This is

extended to introducing the Reduction Lemma and Block Independence Lemma to describe

conditional independence between variables in a partitioned random vector, which is critical to

translating these concepts into graphs. Having covered this, we move onto defining some key

concepts in graph theory, before linking them back to independence in the form of conditional

independence graphs (CIGs). In this chapter, the graphical representation of conditional in-

dependence is introduced. These probabilistic graphical models are used as the foundation for

the rest of the paper. They aim to visual the joint distribution of the variables, and to simplify

it. In understanding the structural information of the graph, we understand the mutual rela-

tionships between the variables (nodes) within. It is also at this stage that we introduce the

Inverse Variance Lemma, which allows us to calculate a partial correlation from the precision

matrix of a data sample. We use these partial correlations to build CIGs from data samples.

If the partial correlation between two variables is statistically significant, then we add these

variables to a CIG as nodes, and link them with an edge. Having developed the framework
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5

through which to understand the broader conditional dependencies and represent them in a

CIG, we move on to the notion of causal relationships and aim to visualise these with directed

acyclic graphs (DAGs). We define the concepts of moral edges in a graph, those linking two

parent nodes that share a child node, and the Wermuth Condition. We use this property to

build a methodology to obtain a DAG from a CIG, through the process of removing moral

edges, “demoralisation”. Once we have finished developing the idea of graphical models, we

turn to stochastic processes. Defining what it means for a stochastic process to be stationary

and Gaussian, we motivate vector autoregressive models (VAR) as a means of describing sta-

tionary multivariate time series data. We discuss the difference between canonical VARs, where

contemporaneous variables (those occuring at the same time period) have no effect on each

other, and structural VARs where there exist such structural dependencies between contempo-

raneous variables. We provide a methodology to achieve a canonical model from a structural

model, and vice versa. Having done so, we move to link the graphical models developed earlier

with the identification of appropriate VAR models to fit the data with a simple “algorithm”.

First we calculate the covariance matrix of the lagged and contemporaneous variables. Using

the Inverse Variance Lemma we achieve a partial correlation matrix, and from this build a

CIG. We use any a priori knowledge of the data to assert the possible direction each edge in

our CIG might take, and enumerate all possible DAGs associated with the CIG due to moral-

isation. We find a direct relationship between a DAG and a VAR model. Thus each DAG

represents a possible VAR model which we might fit to our data. Fitting them all iteratively

and keeping track of their respective performance using penalised likelihood methods, we are

able to determine which model best fits our data.

Once we have covered the theory guiding this methodology, we move to apply it in two

examples. In the first, we will simulate data according to a known structural VAR model and

aim to recover this true model using our methodology. In the second, we will use five years of

data from three Standard and Poor’s indices, treating each index as a variable in our stochastic

process, and aim to determine which model best fits the data, and what this means intuitively.

The aim of this paper is to demonstrate that this methodology is not only able to directly

produce a set of possible models for some given time series data, but further that we are able

to fit each model in the set and optimise for BIC and AIC to find the best one.



Chapter 2

Probability Theory

This work is based heavily on the notions of independence and conditional independence. We

will use conditional independence graphs, and later directed acyclic independence graphs to

represent conditional relationships between variables. Understanding the fundamental concepts

of independence is critical in order to achieve these.

2.1 Independence and Conditional Independence

We will take results for this section mostly from Reale (1998). At the most basic level, inde-

pendence is defined as follows.

Definition 2.1.1. We say that two events A and B are independent, denoted A ⊥ B, if

P(A ∩B) = P(A)P(B).

We can intuitively understand this as learning something about one of the two events does

not provide any information regarding the second. For example, when rolling a die, learning

the outcome of the first roll does not provide any information pertaining to the outcome of the

second.

The notion of conditional probability is needed to be able to later define conditional rela-

tionships between variables. Its definition is as follows.

Definition 2.1.2. The probability of an event A given the event B is given by

P(A|B) =
P(A ∩B)

P(B)
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when P(B) > 0.

We immediately find an equivalent definition of independence using conditional probability.

The two events A and B are independent if

P(A | B) = P(A).

Using this notion of conditional probability, we are able to define conditional independence

of two events given a third.

Definition 2.1.3. We say that two events A and B are conditionally independent given a

third event C, denoted (A ⊥ B)|C, if

P(A ∩B|C) = P(A|C)P(B|C).

Intuitively, we can understand this with a common example, often given in literature. Say

we wish to predict the size of an individual’s vocabulary from their height. These two are likely

dependant, since the taller an individual is, the more likely they are to be older and thus to

have a broader vocabulary. Suppose now that we fix the individuals’ ages, then there is now

no reason to believe that height and vocabulary are dependant.

We may generalise these concepts from events in a probability space to random variables.

Definition 2.1.4. A random variable, X, is a function from the probability space Ω to the

set of real numbers R, denoted

X : Ω→ R

X(ω) 7→ x

for ω ∈ Ω, x ∈ R.

Suppose we flip a coin a hundred times, and define a random variable X as the number of

heads after those hundred flips. The event that the number of heads after a hundred flips is
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less than some integer x, is denoted A, and it’s associated probability is

P(A) = P(X ≤ x)

= P(X = x) + P(X = x− 1) + · · ·+ P(X = 1)

=
∑
t≤x

pX(t)

= FX(x)

where we call FX(x) the cumulative distribution function.

Now say we wanted to compute the probability that after these hundred flips we have exactly

some integer x heads. In the example above, we have a finite, discrete set of probability events,

and thus this probability in positive and denoted P(X = x) = pX(x), the probability mass

function.

In the continuous case, we do not have a discrete support, and so we cannot consider a

random variable taking a specific value x, since

fX(x) = lim
d→0

P(x ≤ X ≤ x+ d) = 0

for all x in the probability space. In this case, we consider the probability that x exists in some

interval on the real axis, P(X ≤ x), for which we can use an integral to sum all ω ∈ Ω such

that X(ω) ≤ x, as follows

FX(x) = P(X ≤ x) =

∫
t≤x

fX(t)

and then fX(x) = dF
dx (t).

Definition 2.1.5. Let X and Y be two continuous random variables, then the conditional

density of X given Y = y is defined as

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
.

Let A be the event that X ≤ x, and B the event that Y ≤ y. Recall that A and B are
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independent if

P(A ∩B) = FX,Y (x, y)

= P(X ≤ x, Y ≤ y)

= P(X ≤ x)P(Y ≤ y)

= FX(x)FY (y)

= P(A)P(B).

Then we can further say that the random variables X and Y are independent if there exist

two functions g and h such that

fX,Y (x, y) = g(x)h(y) (2.1)

where,

fX,Y (x, y) = fX(x)fY (y).

Definition 2.1.6. Let X,Y , and Z be continuous random variables, then Y and Z are said

to be conditionally independent given X = x if

fY,Z|X(y, z | x) = fY |X(y | x)fZ|X(z | x), (2.2)

for any x, y, z. This has the same intuition as with Definition 2.1.3.

Proposition 1. The condition (2.2) can be equivalently stated as

fX,Y,Z(x, y, z) =
fX,Y (x, y)fX,Z(x, z)

fX(x)
(2.3)

or,

fY |X,Z(y | x, z) = fY |X(y | x). (2.4)

In other words, we can cut the conditioning set from X and Z down to X. This can be

demonstrated intuitively with an example. Say you have a regression model with a response

and two regressors. If the response is independent to one of the regressors given the other,

then it is possible to drop this conditionally independent regressor from the model.
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Proof. Let us start by proving (2.3) using (2.2).

fX,Y,Z(x, y, z) = fY,Z|X(y, z)fX(x)

= fY |X(y | x)fZ|X(z | x)fX(x)

=
fY,X(y, x)

fX(x)

fZ,X(z, x)

fX(x)
fX(x)

=
fX,Y (x, y)fX,Z(x, z)

fX(x)

Each step in this proof is reversible and thus we simultaneously prove (2.2) using (2.3).

Moving onto proving (2.4) using (2.3),

fY |X,Z(y | x, z) =
fY,X,Z(y, x, z)

fX,Z(x, z)

=
fX,Y (x, y)fX,Z(x, z)

fX,Z(x, z)fX(x)

=
fX,Y (x, y)

fX(x)

= fY |X(y | x)

Again, each step is reversible and we thus also prove (2.3) using (2.4).

Proposition 2. Y and Z are conditionally independent given X = x if and only if there exist

functions g and h such that

fX,Y,Z(x, y, z) = g(x, y)h(x, z).

Proof. Assume conditional independence, then from (2.3) we have

fX,Y,Z(x, y, z) =
fX,Y (x, y)fX,Z(x, z)

fX(x)
= g(x, y)h(x, z)

where

g(x, y) =
fX,Y (x, y)

fX(x)

h(x, z) = fX,Z(x, z)

and fX(x) > 0. Now suppose we have g and h such that fX,Y,Z(x, y, z) = g(x, y)h(x, z). Let



2.1. INDEPENDENCE AND CONDITIONAL INDEPENDENCE 11

us begin by writing

fX,Y,Z(x, y, z) = fY,Z|X(y, z | x)fX(x).

In order to write this in terms of g and h, we must split fY,Z|X(y, z | x) into fY |X(y | x) and

fZ|X(z | x). By Definition 2.1.6, we thus have that Y ⊥ Z | X.

We will introduce two more propositions before concluding this section with the Block

Independence Lemma.

Proposition 3 (Reduction Lemma). If (X,Y, Z1, Z2) is a partitioned random vector, then

Y ⊥ (Z1, Z2) | X ⇒ Y ⊥ Z1 | X.

Proof. We have that Y ⊥ (Z1, Z2) | X ⇒ fY,Z1Z2|X(y, z1, z2 | x) = fY |X(y | x)fZ1Z2|X(z1, z2 |

x) by the definition of conditional independence. We can integrate out Z2 from both sides

of this equation, resulting in fY,Z1|X(y, z1 | x) = fY |X(y | x)fZ1|X(z1 | x), which returns

Y ⊥ Z1 | X.

Proposition 4. If (X,Y, Z) is a partitioned random vector, then

X ⊥ (Y,Z)⇒ X ⊥ Y.

In other words, joint independence implies marginal independence.

Proof. The proof of this proposition is similar to the proof of the Reduction Lemma, only

with a conditioning set that can be factored out. It is thus a specific case of the Reduction

Lemma.

Proposition 5 (Block Independence Lemma). If (X,Y, Z1, Z2) forms a partitioned random

vector with positive density fX(x), then the following two statements are equivalent:

(a) Y ⊥ (Z1, Z2)|X

(b) Y ⊥ Z1|(X,Z2) and Y ⊥ Z2|(X,Z1)

The proof of the Block Independence Lemma is given in Whittaker (1990).



Chapter 3

Graphical Models

In order to link statistical methods with graphical models, we must establish definitions relating

to graph theory. We will then move on to define different types of graphical models, and how

we can go from one type to the other and vice versa. Finally, we discuss how we can test for

significance in conditional independence graphs.

3.1 Basics of Graphs

For this section, we take results from Megyesi (2021).

Definition 3.1.1. A graph is an ordered pair G = (V,E), where V is a non-empty finite set,

called the set of vertices or nodes and E is a set of unordered pairs of elements of V called the

edges. If uv ∈ E, then we say that u and v are adjacent (or neighbours) and they are incident

with the edge uv.

Definition 3.1.2. A graph G′ = (V ′, E′) is called a subgraph of G = (V,E) if V ′ ⊆ V and

E′ ⊆ E.

Definition 3.1.3. A directed graph, G� = (V,E�), is a graph that has ordered edges repre-

sented by arrows.

Definition 3.1.4. A walk in a graph G = (V,E) is an alternating sequence of vertices and

edges v0e1v1 . . . vn−1envn, where v0, v1, ..., vn ∈ V and e1, e2, ..., en ∈ E, and further that the

edge ei connects the two vertices vi−1 and vi.

A path is a walk with no repeated vertices.

A cycle is a closed walk (v0 = vn) of length l ≥ 3.

12
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3.2 Conditional Independence Graphs

Conditional independence graphs (CIGs) visually represent the conditional independence rela-

tionships between variables. A CIG consists of vertices representing random variables, where

two vertices are connected with an edge if the random variables are conditionally dependent

given the rest of the graph. Thus if two nodes are not linked with an edge, they are conditionally

independent.

Over the course of this section and those that follow also relating to graphical models, we

will interest ourselves with results from Reale (1998) and Whittaker (1990).

1 2 3 4

Figure 3.1: An example CIG

Consider the CIG in Figure 3.1 with vertices 1, 2, 3, 4. We can directly read from it that

X1 and X3 are independent given X2 and X4, or symbolically, 1 ⊥ 3 | {2, 4}. We would like

to condense this notation to 1 ⊥ 3 | 2, as we can see that the node 4 has no effect on the

node 1. The Separation Theorem, which we will prove in this section, allows us to do so by

concluding that only those nodes that separate two sets of random variables are needed in the

conditioning set.

In Figure 3.1, the nodes 1 and 3 are said to be separated by the node 2. We will look to

generalise this idea of separation to subsets of vertices before defining some properties of CIGs.

Definition 3.2.1. Two vertices u, v ∈ V in a graph G = (V,E) are said to be separated by a

subset of vertices S ⊂ V if all paths from u to v include at least one vertex w ∈ S.

Proposition 6. Suppose that a set of vertices V = 1, 2, ..., n of a CIG can be partitioned into

two sets B and C such that, there are no edges connecting any vertex b ∈ B with any c ∈ C.

Then,

b ⊥ c,∀b ∈ B, c ∈ C

Proof. The main idea in this proof is to establish the independence between two random

variables b ∈ B and c ∈ C given the other nodes in the CIG, and remove all elements of the

conditioning set. We begin by fixing two vertices b ∈ B and c ∈ C and we take a third vertex

v ∈ C. We know that,

b ⊥ c | V \{b, c} and b ⊥ v | V \{b, v}
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By the Block Independence Lemma, we can combine these properties to say,

b ⊥ {c, v} | V \{b, c, v}

And by the Reduction Lemma, we can reduce this to,

b ⊥ c | V \{b, c, v}

We have thus succeeded in factoring out our third node v from our conditioning set. Repeating

this for all remaining vertices in C, we eventually reduce the set to C = {c} as it is a finite

set. Doing the same to the set B, we are eventually left with a graph of only the two vertices

V = {b, c}, and no edges connecting them. We are able to do this for any two vertices b ∈ B

and c ∈ C, and thus we eventually conclude that indeed,

b ⊥ c,∀b ∈ B, c ∈ C

Proposition 7. Let A ⊂ V be any subset of vertices in a graph G = (V,E) that separates

any two vertices b ∈ B ⊂ V , c ∈ C ⊂ V , that is that all paths connecting b to c contain at

least one vertex a ∈ A, where A,B, and C are disjointed subsets of V . Then,

b ⊥ c | a

Or, more strongly,

B ⊥ C | A

Proof. Let b ∈ B and c ∈ C, then b and c separated by A, and any other vertices in the graph

are either connected to A ∪ {b, c} or not. If they are not, then by construction they do not

influence the independence of b and c, and we need not consider them. So we have,

X = {x : x is separated from c by A}

Y = {y : y /∈ X, and is separated from b by A}

We thus have five nodes in this new representation: b, c, A,X and Y . We link these nodes

with an edge if it is possible for any elements within them to be connected in the original CIG.
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By construction, there are no edges connecting b and c, b and Y , c and X, or X and Y (as

otherwise they would belong to A). This is represented in the following diagram.

b A c

X Y

We now look to apply the Block Independence Lemma and then the Reduction Lemma,

much like in the previous proof, to factor out all elements of X and Y from our conditioning

set.

Take the vertices b, c and some y ∈ Y . By construction,

b ⊥ c | V \{b, c} and b ⊥ y | V \{b, y}

By the Block Independence Lemma,

⇒ b ⊥ {c, y} | V \{b, c, y}

And by the Reduction Lemma,

⇒ b ⊥ c | V \{b, c, y}

In the independence graph of V \{y}, there are no edges connecting b to c.

We thus repeat this process for all y ∈ Y until we have completely factored out Y . This is

a finite process as the set of total vertices V is finite. We then apply a similar logic for the the

vertices of X, at which point, we can eventually conclude that indeed,

B ⊥ C | A.

Theorem 1 (The Separation Theorem). Let
−→
X be a vector of variables x1, x2, ..., xn. If

−→
Xa,
−→
X b

and
−→
X c are vectors containing disjoint subsets of variables from X, and if, in the independence

graph of
−→
X , each vertex xa ∈

−→
Xa is separated from each xc ∈

−→
X c by the vertices of

−→
X b, then,

−→
Xa ⊥

−→
Xc |

−→
Xb
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Graphically, this is depicted as follows:

−→
Xa

−→
Xb

−→
Xc

Figure 3.2: A graphical representation of the Separation Theorem

where each edge represents the totality of edges between the variables in each vector.

Proof. The Separation Theorem follows directly from Proposition 7, where we proved that for

any two vertices b ∈ B ⊂ V , c ∈ C ⊂ V ,where all paths connecting b to c contain at least one

vertex a ∈ A, then, b ⊥ c | a. We can apply this to all xa ∈
−→
Xa and xc ∈

−→
Xc that are separated

by the vertices of
−→
Xb, and conclude more strongly that indeed, from the previous proposition,

−→
Xa ⊥

−→
Xc |

−→
Xb.

To return to the first example CIG of this section in Figure 3.1, we can take
−→
Xa = {1},

−→
Xb =

{2},
−→
Xc = {3}, and say, 1 ⊥ 3 | 2 without need to mention the node 4 as direct result of the

Separation Theorem.

3.3 Directed Acyclic Independence Graphs

We will now modify our notation in order to capture information relating to causality, by

creating directed acyclic graphs (DAGs). In probability theory, causality is the notion of one

event being always followed by another. A causal relationship is one in which one event, which

we call the effect, is always preceded by another, the cause. Here we say that the first event

causes the effect.

To represent this relationship, we will turn our undirected edges into directed edges, rep-

resenting the causality of one vertex by the one from which the edge originated. Let us take

an example to illustrate this.

1 2 3

Figure 3.3: An Example DAG

In this example, we can see that the nodeX1 causesX2, andX2 causesX3. Probabilistically,

this is equivalent to,

fX1,X2,X3(x1, x2, x3) = fX3|X2
(x3 | x2)fX2|X1

(x2 | x1)fX1(x1)



3.3. DIRECTED ACYCLIC INDEPENDENCE GRAPHS 17

Clearly, the introduction of cycle to one of these graphs produces a circular causality,

fX1,...,Xn
(x1, ..., xn) = fXn|Xn−1

(xn | xn−1) . . . fX1|Xn
(x1 | xn)

that leads to some difficulty. We will thus limit ourselves to only graphs that are acycic.

A major interest of ours is to translate from a CIG to a DAG, and vice versa. Doing

so allows us to, in one direction, build hypotheses on variable causality, and in the other,

understand the broader independence relationships between variables.

3.3.1 Getting CIGs From DAGs

First, we look to obtain a CIG from a DAG, so that we may understand the dependence

relationships between variables. In order to do so, we simply replace all directed edges with

undirected edges. For example, take the following DAG, which we will call GDAG, from which

1 2 3

Figure 3.4: GDAG

we can understand the following causality relationship between variables.

f1,2,3(·) = f3|2(·)f2|1(·)f1(·)

Replacing directed edges with undirected edges, we achieve the following CIG, called GCIG,

in Figure 3.5, from which we understand that 1 ⊥ 3 | 2.

1 2 3

Figure 3.5: GCIG

We wish to show that these two statements are equivalent, and that indeed these two graphs

represent the same information. To begin with, we can write the probability densities for our

CIG using equation (2.2).

1 ⊥ 3 | 2⇒ f1,3|2(·) = f3|2(·)f1|2(·)
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And we wish to show that GDAG ⇔ GCIG.

fCIG1,2,3 (·) = f1,3|2(·)f2(·) (Rewrite as conditional distributions)

= f1|2(·)f3|2(·)f2(·) (By independence)

= fDAG1,2,3 (·) (By definition)

In general, we cannot obtain a CIG from a DAG simply by replacing directed edges with

undirected edges. An example of this, is DAGs that do not satisfy the Wermuth Condition.

Definition 3.3.1 (Wermuth Condition). We say that a DAG satisfies the Wermuth Condition

when it has no subgraphs where two nodes that are not neighbours both have edges pointing

towards the same third node, as in Figure 3.6.

1

2

3

Figure 3.6: A graph that does not satisfy the Wermuth condition

Let us show that we indeed cannot find an associated CIG directly for this case, taking the

DAG shown above which we will call GW’
DAG. Its associated CIG is the following GW’

CIG seen in

Figure 3.7, and is created by simply replacing directed edges with undirected ones.

1

2

3

Figure 3.7: GW’
CIG

Let us show that there is indeed a contradiction between GW’
DAG and GW’

CIG, and that this

CIG is not equivalent to its DAG. From GW’
DAG, we understand that,

fDAG
1,2,3 (·) = f3|1,2(·)f1(·)f2(·)

= f3|1(·)f3|2(·)f1(·)f2(·) (By independence)
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And from our CIG, we see that 1 ⊥ 2 | 3, from which we can infer that,

fCIG
1,2,3(·) = f1,2|3(·)f3(·)

= f1|3(·)f2|3(·)f3(·)

=
f3|1(·)f1(·)

f3(·)
f3|2(·)f2(·)

f3(·)
f3(·) (Bayes’ Theorem)

=
f3|1(·)f3|2(·)f1(·)f2(·)

f3(·)2
f3(·)

=
fDAG
1,2,3 (·)
f3(·)

And thus fDAG
1,2,3 (·) 6= fCIG

1,2,3(·). If we wish to eventually convert a DAG that does not satisfy

the Wermuth condition into an equivalent CIG, we must moralise it.

Definition 3.3.2. Moralisation is the process of achieving the moral graph associated with

the DAG, G� = (V,E�). This is the undirected graph build using the same vertex set, V ,

converting all directed edges in E� to undirected edges linking the same vertices, and then

adding all undirected edges needed to satisfy the Wermuth condition for the new graph.

In the case of our DAG in Figure 3.6, the associated moral graph is the following graph

seen in Figure 3.8. We call the process of adding an edge between the vertices 1 and 2 to link

them, the marrying of the vertices.

1

2

3

Figure 3.8: The moral graph associated with GW’
DAG

Definition 3.3.3. A graph G = (V,E) is said to be bipartite if its vertices can be partitioned

into two non-empty subsets V1, V2 such that V1 ∪ V2 = V, V1 ∩ V2 = ∅, and there are no edges

connecting two vertices in V1, and no edges connecting two vertices in V2. An example is given

in Figure 3.9.

Definition 3.3.4. A graph G = (V,E) is said to be k-partite if its vertices can be partitioned

into k non-empty subsets V1, V2, ..., Vn such that V1 ∪ V2 ∪ · · · ∪ Vn = V , Vi ∩ Vj = ∅, i 6= j,

and there are no edges connecting two vertices in any Vi.
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1

2

3

4

5

6

V1 V2

Figure 3.9: A bipartite graph with non-empty subsets V1 and V2

The following proposition is, as far as I can tell, a novel interpretation of the Wermuth

condition.

Proposition 8. For any DAG that satisfies the Wermuth condition, its associated CIG is

bipartite.

Proof. By construction, we have no cycles in our DAGs and because they satisfy the Wermuth

condition, we have no obligation to moralise them. Their equivalent CIGs are thus trees.

Taking an arbitrary root node in the tree, v0, there is only one path from v0 to all other

vertices in the tree. Thus, by colouring all nodes an even distance from v0 and v0 itself blue,

and colouring all nodes an odd distance from it red, adjacent vertices have different colours.

Assume that this is not the case, then there is exists more than one path from our root

vertex to any other vertex, which in turn implies the existence of a cycle in our tree.

We have thus found a contradiction, and indeed the vertices of the graph can be coloured

by two colours such that no two adjacent vertices have the same colour. This is equivalent to

saying our graph is bipartite, and we conclude our proof.

Let us illustrate this result. Take the following DAG.

1 2

3

4

5

6

7

As we can see, there are no cycles by definition, and the Wermuth condition is satisfied
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since there are no two nodes both directed towards the same third node. We may thus find its

associated CIG directly by replacing all arrows with undirected edges as follows. We choose

the node 1 to be our root node and colour it blue. Colouring all nodes an even distance from

it blue, and all nodes an odd distance red, we see that no two adjacent nodes are coloured the

same.

1 2

3

4

5

6

7

This graph can in turn be partitioned into two non-empty subsets V1 and V2 such that no

two vertices in each subset is connected with an edge. This partitioning is as follows.

1

3

4

7

2

5

6

V1
V2

We find the graph is indeed bipartite, and see it here illustrated in terms of its non-empty

subset partitioning.

3.3.2 Getting DAGs From CIGs

We will now look at how we might achieve a DAG from a CIG, a process known as demoral-

isation where we look to convert non-directed edges to directed edges. It is clear that when

converting non-directed edges to directed edges, we can achieve many different directed graphs,
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for example by reversing the direction of a directed edge. Indeed, there is no unique solution

to this problem. In fact, when we demoralise a CIG to achieve a DAG, we are building a set

of hypotheses of possible configurations to later test.

For example, take the moralised CIG in Figure 3.8. There are three edges, which can each

take two directions of flow, meaning we have 23 possible configurations of our demoralised DAG.

In general, where n is the number of edges in our CIG, there are 2n possible configurations of

its associated demoralised DAG. In our example, we have the following configurations seen in

Figure 3.10.

1

2

3

(a)

1

2

3

(b)

1

2

3

(c)

1

2

3

(d)

1

2

3

(e)

1

2

3

(f)

1

2

3

(g)

1

2

3

(h)

Figure 3.10: Demoralised DAGs associated with the CIG in Figure 3.8.

We can see that the graph in Figure 3.10(d) and 3.10(f) are cycles of length three. We thus

remove them from consideration.

This leaves us with six choices from which to choose the most appropriate. In the case of

a Gaussian DAG, the joint distribution of the model is the product of its component marginal

distributions. For example, taken the following Gaussian DAG.

1 2

3

4

5
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The joint distribution of this model can be rewritten as

fx1,x2,x3,x4,x5
= fx1|x2

fx2|{x3,x4}fx3|x5
fx4|x5

fx5
.

Each of these marginal distributions f
xi|
−→
Xc

can be thought of as a regression of xi on
−→
X c with

uncorrelated error terms, and the error terms of each regression are mutually uncorrelated. The

divergence of a DAG model (−2 log-likelihood) can be computed as the sum of the divergence

of the marginal distributions (regressions). In our example above, this becomes

Div = lnS1 + lnS2 + lnS3 + lnS4 + lnS5

where S1 is the residual sum of squares from the regression of x1 on x2, and so on. For S5,

this becomes the residual sum of squares of the regression of x5 on no regressors, or raw sum

of squares of the observations of x5. We may choose the the DAG with the lowest divergence

(equivalently, the highest likelihood).

When this isn’t possible, or there are multiple models with similar, low divergence, we

have three solutions. First, we are able to adjust the threshold for the partial correlation

significance test, although this leads to tradeoff between type 1 and type 2 errors. Second, we

can choose the most explicative model. This is the model with the most valuable links. Last,

we can choose the most parsimonious model. To do this, we remove the least valuable links,

as calculated by t value of the regressors in the margin regressions, and look to obtain a model

with fewer parameters without incurring a significant loss is likelihood.

We will favour a parsimonious model over an explicative one provided there is not a signif-

icant increase in divergence.

Once have chosen the most appropriate model, we must remove those edges which are

present due to moralisation. For example, should we choose the graph in Figure 3.10(a), then

we would have to establish whether the edge connecting vertices 1 and 3 is present due to

moralisation, and if so then remove it.

It is worth noting that there do exist some CIGs from whom it is impossible to derive a

DAG, although we will not dwell on these cases too much longer given the scope of this work.
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3.4 Gaussian CIGs

The Gaussian (or Normal) distribution is unique among continuous distributions with support

from negative infinity to positive infinity due to its Maximum Entropy Characterisation. This

is the characteristic that among all continuous distributions with support (−∞,+∞), the

Gaussian distribution has the highest differential entropy. Thus, if we have data with little

prior knowledge, then the normal distribution is a sensible assumption.

We thus move to assert this to our case. Assume we have a data matrix, X, of n samples

that is multivariate normally distributed, in dimension d, such that the distribution of each

observation can be denoted,

−→x ∼ Nd(
−→µ ,Σ)

Where −→µ is the vector or expectations for each component of −→x ,

−→µ =



µ1

µ2

...

µd


=



E(x1)

E(x2)

...

E(xn)


and Σ is the n× d covariance matrix, such that,

Σ =



σx1,x1
σx1,x2

. . . σx1,xd

σx2,x1 σx2,x2 . . . σx2,xd

...
...

. . .
...

σxn,x1
σxn,x2

. . . σxn,xd


Relating this back to CIGs, we are able to identify partially independent componenents

of −→x by calculating the partial correlation matrix, and asserting that two components are

independent if and only if their partial correlation is zero. Formally, this is given by,

xi ⊥ xj ⇔ Cor(xi, xj | −→xc) = 0

where −→xc = −→x \{xi, xj}. These partial correlations can be calculated directly from the covari-

ance matrix Σ as a result of the Inverse Variance Lemma.

Theorem 2 (Inverse Variance Lemma). Let −→x be a normally distributed random vector in d
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dimensions, such that,

−→x ∼ Nd(
−→µ ,Σ)

then we can define the Precision (or Concentration) matrix of −→x , Ω, as follows.

Ω = Σ−1

From this, we calculate the pairwise partial correlations of components xi, xj via,

ρi,j|rest = − ωi,j√
ωi,iωj,j

where ωi,j ∈ Ω. Note that this is only defined when Σ is invertible.

Proof. The following proof is adapted from Reale (1998).

We begin by defining the covariance between the two components xi and xj ,

Cov(xi, xj | −→z ) = Var(−→e )

= ΣY Y −ΣZY Σ−1ZZΣY Z = U

from which we can derive the partial correlation between them via,

Cor(xi, xj | −→z ) =
ui,j√
ui,i, uj,j

now let,

Ω = Σ−1 =

ΩY Y ΩY Z

ΩZY ΩZZ


then we want to show that U−1 = ΩY Y . By construction, we have that,

Ω = Σ−1 ⇒ ΣΩ = Id

where Id is the d× d identity matrix. We can rewrite this as,

ΣY Y ΣY Z

ΣZY ΣZZ


ΩY Y ΩY Z

ΩZY ΩZZ

 =

I2 0

0 Id−2


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from which we can read,

ΣY Y ΩY Y + ΣY ZΩZY = I2 (3.1)

ΣY ZΩY Y + ΣZZΩZY = 0 (3.2)

From equation (3.2),

ΩZY = −Σ−1ZZΩY Y ΩZY (3.3)

Substituting equation (3.3) into (3.1), we achieve,

ΣY Y ΩY Y −ΣY ZΣ−1ZZΣZY ΩY Y = I2

⇒ (ΣY Y −ΣY ZΣ−1ZZΣZY )︸ ︷︷ ︸
U

ΩY Y = I2

⇒ U = Ω−1Y Y

So we have successfully shown that indeed Var(−→e ) = U = Ω−1Y Y as desired. We now endeavour

to show that element-wise,

ui,j√
ui,i, uj,j

= − ωi,j√
ωi,i, ωj,j

where ui,j ∈ U and ωi,j ∈ Ω. Let,

U =

 σ2
i ρσjσi

−ρσiσj σ2
j


so that we have by construction,

ρ =
ui,j√
ui,iuj,j

From this, we may derive,

ΩY Y = U−1 =
1

σ2
i σ

2
j (1− ρ2)︸ ︷︷ ︸
λ

 σ2
j −ρσ2

jσ
2
i

−ρσ2
i σ

2
j σ2

i


⇒ ωi,i =

σ2
j

λ
, ωj,j =

σ2
i

λ
, ωi,j = −ρσiσj

λ
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And finally, we conclude that,

− ωi,j√
ωi,iωj,j

= −
−ρσiσj

λ√
σ2
j

λ

σ2
i

λ

= ρ =
ui,j√
ui,i, uj,j

3.4.1 Testing Conditional Independence Significance

Say we have n observations on some random variable,
−→
X , which we assume to be normally

distributed in d dimensions,

−→
X ∼ Nd(

−→µ ,Σ)

then from this data matrix, we can estimate the covariance matrix, Σ̂, and in turn use this

to compute Ω̂, and thus the sample’s partial correlations as per the Inverse Variance Lemma.

Under the assumptions, partial correlation and conditional dependence are equivalent. That is

to say that if two variables have a partial correlation significantly different to zero, then they

are said to be dependant given the rest of the data. These variables will eventually make up

the vertex set of a CIG, and the edge set will be defined by these significant partial correlations.

Say we have a random data vector
−→
X = (x1, ..., xn)T , and we wish to test all partial

correlations between each xi, xj ∈
−→
X . We are able to find a calculate the t-statistics t2i,j of

these partial correlations ρ
xi,xj |

−→
Xc

testing their statistical significance, and find the link

ρ2
xi,xj |

−→
Xc

=
t2i,j

t2i,j + υ

where υ = n− k are the residual degrees of freedom in the model. From this relationship, we

are able to compute the critical values of ρ and t.

Once we have identified the appropriate CIG from this significance test, we will be able to

build and test its associated models.



Chapter 4

Time Series Analysis

In this chapter, we define some basic concepts relating to stochastic processes, before introduc-

ing vector autoregressive models as a tool for modelling stationary stochastic processes. We

will then discuss the different types of vector autoregressive models and how they relate to

each other, before demonstrating how they can be linked back to graphical models. We end

the chapter with a worked example of the methodology developed on simulated data.

4.1 Stochastic Processes

We make use of definitions provided in Reale (1998) for this section.

Definition 4.1.1. A stochastic process is a set of random variables indexed by time t, {Xt} =

{X1, X2, X3, ...}, where the set of possible values of each Xt is called the state space, denoted

S. S may be continuous, discrete, univariate, or multivariate.

We use the following notation to refer to stochastic processes.

{Xt} The whole stochastic process

{xt} A sample function (possible outcome of {Xt})

Xt The random variable defined at time t

xt A sample value at t

Example 4.1.1 (Markov Chain). A stochastic process is called a Markov Chain if

P(Xt = xt | X0 = x0, X1 = x1, ..., Xt − 1 = xt − 1) = P(Xt = xt | Xt − 1 = xt − 1)

for all x0, x1, ..., xt ∈ S.

28
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Example 4.1.2 (Martingales). A martingale is a stochastic process with the property

E[Xt+1 | X0 = x0, X1 = x1, ..., Xt = xt] = xt

for all t. A martingale difference is a martingale with

E[Xt+1 | X0 = x0, X1 = x1, ..., Xt = xt] = 0

for all t.

A stochastic process is completely determined if the joint distributions of any finite selection

of the random variables are known. This is not generally the case. In order to determine

these processes more generally, we make two assumptions: that the process is stationary and

Gaussian.

Definition 4.1.2 (Stationarity). A stochastic process is called stationary if its probabilistic

structure remains constant with time. We call it strongly stationary if the collections of random

variables

Xk, Xk+1, ..., Xk+n and Xk+h, Xk+1+h, ..., Xk+n+h

have the same joint distribution funciton for all k, n, and for h > 0. The process is called

weakly stationary if

E[Xt] = µx and Var(Xt) = σ2
x for all t

and the covariance between {Xt} and {Xt+k} depends only on the lag, in other words

Cov(Xt, Xt+k) = E[(Xt − µx)(Xt+k − µx)]

for all t and for k ∈ Z. Strong stationarity implies weak stationarity if the second order moment

exists, although the opposite is not true in general.

Example 4.1.3 (White Noise). This is a purely random process {εt}, where all random

variables in the process have zero mean, and constant and uncorrelated variances. We thus

have

E[εt] = 0 for all t

Example 4.1.4 (Random Walk). A random walk, given by Xt = Xt−1+ωt, where ω1, ω2, ..., ωt

are independent and identically distributed with E[ωi] = µω and Var(ωi) = σ2
ω, is a non-
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stationary process. We can show this by expanding the process as follows.

Xt = Xt−1 + ωt

= (Xt−2 + ωt−1) + ωt

= x0 +

t∑
k=1

ωk

Where thus

E[Xt] = x0 + tµω and Var(Xt) = tσ2
ω

are both in terms of t, and thus variable with time.

Definition 4.1.3 (Gaussianity). A stochastic process {Xt} is called Gaussian if for all sets of

k random variance in the process, their joint density function is Gaussian, that is

f(Xt1, Xt2, ..., Xtk) = (2π)−
k
2 | Σ |− 1

2 exp(−1

2
(−→x −−→µ )TΣ−1(−→x −−→µ ))

where −→x is a vector of state values, −→µ the vector of means, and Σ the covariance matrix of

the random variables.

A Gaussian process is determined if −→µ and Σ are known to us. If the process is weakly

stationary then −→µ remains constant across time, and thus we can determine that for Gaussian

processes, weak stationarity implies strong stationarity.

Definition 4.1.4 (Autocovariance Function). For a stochastic process {Xt}, the autocovari-

ance function is the covariance between variables at different times, formally given by

R(k) = Cov(Xt, Xt−k).

This will be used in the autocorrelation function to follow.

Definition 4.1.5 (Autocorrelation Function). The autocorrelation function (ACF) of a stochas-

tic process {Xt} is the correlation between two variables at different times, formally given by

r(k) = Corr(Xt, Xt−k)

=
Cov(Xt, Xt−k)√

Var(Xt)Var(Xt−k)

=
R(k)√

Var(Xt)Var(Xt−k)
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Considering stationary stochastic processes, we have that Var(Xt) = Var(Xt−k) for all t, k

and thus,

r(k) =
R(k)

R(0)

for all k.

Properties of the Autocorrelation Function:

1. r(0) = 1

2. R(k) = R(−k)

3. r(k) = r(−k)

4. | r(k) |≤ 1

5. The ACF is invariant to linear transformations of the stochastic process, in other words,

rX(k) = ra+bX(k)

The following definition is taken from Romer (2020).

Definition 4.1.6 (Partial Autocorrelation). Partial Autocorrelation is a measure of condi-

tional correlation between the values of a stochastic process at times t and t − k, given the

values of the process at all other values of t. Formally, this is expressed as

Cov(Xt, Xt−k |
−→
Xc)√

Var(Xt |
−→
Xc)Var(Xt−k |

−→
Xc)

where
−→
Xc = Xt−1, Xt−2, ..., Xt−k+1.

4.2 Autoregressive Models

A univariate autoregressive model (herein referred to as an AR model) of order p is a stochastic

process of the form

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + εt

where εt is uncorrelated with Xt−1, Xt−2, ... and with εt−1, εt−2, ... .

Example 4.2.1 (AR(1)).

Xt = φXt−1 + εt
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To ensure that we have finite first and second order moments, and thus satisfy the station-

arity condition, the roots of the polynomial in φ must lie outwith the unit circle.

Example 4.2.2. Take the AR(1) model once more and rewrite it, expanding each Zi term.

Then we achieve,

Xt = φXt−1 + εt

= φ(φXt−2 + εt−1) + εt

= εt + φεt−1 + φ2Xt−2

= εt + φεt−1 + φ2εt−2 + · · ·+ φpεt−p + φp+1Xt−p−1

where

µX = φp+1Xt−p−1 and σ2
X =

p∑
i=0

φ2iσ2
ε + φp+1σX(t−p−1).

For stationarity, we need these to be finite, and thus require that |φ| < 1.

Vector autoregressive models (VAR models) relate each variable at time t to their values

at previous time periods up to a certain point. We refer to variables that occur further back

in time as anterior variables over the course of this paper. For example, xt−1 is anterior to

xt. This look-back period is called the lag, and is denoted p. There are two types of VAR

models: canonical and structural. The structural VAR models makes assertions about the

causal relationship between contemporaneous variables, while the canonical do not.

4.2.1 Canonical VAR Models

The canonical VAR models takes the form

−→
X t = Φ1

−→
X t−1 + Φ2

−→
X t−2 + · · ·+ Φp

−→
X t−p +

−→
E t (4.1)

which maybe rearranged for
−→
E t using the polynomial Φ(z), z ∈ C as

Φ(z)
−→
X t =

−→
E t

⇒
−→
X t = Φ(z)−1

−→
E t.

In order for the process described in (4.1) to be a stationary process, we need Φ(z)−1 to

converge for |z| ≤ 1. Or equivalently, det(Φ(z)) not equal to zero for |z| ≤ 1.
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Example 4.2.3. The canonical VAR(2) process is given by

−→
X t = Φ1

−→
X t−1 + Φ2

−→
X t−2 +

−→
E t

or more verbosely,

X1,t

X2,t

 =

φ1,1,1 φ1,2,1

φ2,1,1 φ2,2,1


X1,t−1

X2,t−1

 +

φ1,1,2 φ1,2,2

φ2,1,2 φ2,2,2


X1,t−2

X2,t−2

 +

ε1,t
ε2,t

 .

4.2.2 Structural VAR Models

These models account for dependencies between the elements of contemporaneous variables,

that is variables for the same time index, and are of the form

Φ∗0
−→
X t = Φ∗1

−→
X t−1 + Φ∗2

−→
X t−2 + · · ·+ Φ∗p

−→
X p−1 +

−→
E ∗t

where Φ∗0 has some non-zero off-diagonal elements.

A structural VAR model is borne from some hypothesis we have about the relationship

between variables in our model. The elements of
−→
E ∗t are uncorrelated both among themselves

and with the elements of
−→
X t. In order for our structural model to be uniquely defined, some

elements of Φ∗0 must be zero. The covariance matrix of our structural model is diagonal,

whereas in a canonical model it may take any which form.

Note that the canonical VAR model is a special case of the structural, where Φ∗0 = I, and

there are no constraints on
−→
E ∗t .

We may wish to convert a structural VAR to a canonical VAR or vice versa, since the

canonical VAR model is uniquely parametrised, and thus makes prediction easier. Equally, the

structural VAR is expected to be more parsimonious, and as a result, easier to interpret.

Lemma 1. Any structural VAR can be transformed into a canonical VAR by multiplying

through by (Φ∗0)−1 as follows

−→
X t = (Φ∗0)−1Φ∗1

−→
X t−1 + (Φ∗0)−1Φ∗2

−→
X t−2 + · · ·+ (Φ∗0)−1Φ∗p

−→
X p−1 + (Φ∗0)−1

−→
E ∗t

= Φ1
−→
X t−1 + Φ2

−→
X t−2 + · · ·+ Φp

−→
X t−p +

−→
E t.

It is worth noting that the same canonical VAR models can be attained from multiple
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different structural VAR models. In order to go from a canonical VAR to a structural in that

case, we require prior information about our model.

Lemma 2. For any given canonical VAR, there exist multiple associated structural VARs.

Let us decompose Var(
−→
E t) = Σε as

Σε = TDTT

where T is triangular, D is diagonal, and the two are not unique. Let Φ∗0 = T−1, and multiply

our canonical VAR through by this, yielding a structural VAR with

Φ∗j = Φ∗0Φj and
−→
E ∗t = Φ∗0

−→
E t

where, by construction, Σε = D so that the components of Σε are uncorrelated.

Example 4.2.4. We will provide a worked example where we will begin with a structural

VAR model, convert this to its canonical equivalent, and then make the reverse transformation

only to achieve a different structural VAR model. Take the following system of equations


xt = 0.8xt−1 + εxt

yt = 0.5yt−1 + 0.2xt + εyt

where εx, εy ∼ N(0, 1) and are independent of each other. By construction, the covariance of

our errors Σε = I.

We rearrange this system to obtain a structural VAR representation as follows.


xt = 0.8xt−1 + εxt

yt − 0.2xt−1 = 0.5yt−1 + εyt

⇒

 1 0

−0.2 1


xt
yt

 =

0.8 0

0 0.5


xt−1
yt−1

 +

εxt
εyt



By multiplying through by (Φ∗0)−1 =

 1 0

−0.2 1


−1

, we achieve the associated canonical
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VAR,

xt
yt

 =

 1 0

−0.2 1


−1 0.8 0

0 0.5


xt−1
yt−1

 +

 1 0

−0.2 1


−1 εxt

εyt


=

 0.8 0

0.16 0.5


xt−1
yt−1

 +

 1 0

0.2 1


εxt
εyt

 (††)

where the covariance of the errors is now

Σ =

 1 0

0.2 1


1 0

0 1


 1 0

0.2 1


T

=

 1. 0.2

0.2 1.04

 .

In order to transform this canonical VAR back to a structural representation, we first

decompose the covariance of its errors.

 1 0.2

0.2 1.04


︸ ︷︷ ︸

Σ

=

1 0.2
1.04

0 1


︸ ︷︷ ︸

T

 1
1.04 0

0 1.04


︸ ︷︷ ︸

D

 1 0

0.2
1.04 1


︸ ︷︷ ︸

TT

And we thus find directly that

Φ∗0 = T−1 =

1 − 0.2
1.04

0 1


and by multiplying our canonical VAR model given in (††) through by this, we achieve a second

associated structural VAR model.

1 − 0.2
1.04

0 1


xt
yt

 =

1 − 0.2
1.04

0 1


 0.8 0

0.16 0.5


xt−1
yt−1

 +

1 − 0.2
1.04

0 1


 1 0

0.2 1


εxt
εyt


=

0.769 −0.1

0.16 0.5


xt−1
yt−1

 +

0.962 −0.192

0.2 1


εxt
εyt


Note that this structural VAR associated with the canonical VAR in (††) is different to

our initial structural VAR. This example shows that a canonical VAR model encapsulates the

information of all of its associated structural models, and that many structural models can be
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used to obtain the same canonical model.

Within structural VAR models, there are two subclasses: causal models, and simultaneous

equations models. When it is possible to order our system of equations such that Φ∗0 is

triangular, we say that our structural VAR is causal, or recursive.

Example 4.2.5. Consider the system of equations


xt = α1xt−1 + α2yt + α3 + ut

yt = β1yt−1 + β2xt−1 + vt

zt = γ1zt−1 + γ2yt + γ3xt−1 + et

where {ut, vt, et} are uncorrelated errors. We may reorder this system as


yt = β1yt−1 + β2xt−1 + vt

zt = γ1zt−1 + γ2yt + γ3xt−1 + et

xt = α1xt−1 + α2yt + α3zt + ut

or in matrix form,


1 0 0

−γ2 1 0

α2 α3 1


︸ ︷︷ ︸

Φ∗
0


yt

zt

xt


︸ ︷︷ ︸
−→
X t

=


β1 0 β2

0 γ1 γ3

0 0 α1


︸ ︷︷ ︸

Φ∗
1


yt−1

zt−1

xt−1


︸ ︷︷ ︸
−→
X t−1

+


vt

et

ut


︸ ︷︷ ︸
−→
E t

The fact that Φ∗0 is lower triangular suggests that each variable is effected only by antierior

variables, that is those occuring before, and so we can deduce a causal path between them and

represent this in a DAG.

When it is not possible to achieve a triangular Φ∗0, we have a simultaneous equations model,

and may not need a DAG to represent the causality between variables.

4.3 Graphical Modelling for Time Series Analysis

We now look to represent our VAR models as DAGs, taking a set of values from our stationary

time series {Xt, Xt−1, . . . , Xt−k} as variables in our graphical models. Under Gaussianity, we
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can calculate the covariance matrix Σ = Cov(Xt, Xt−1, . . . , Xt−k), derive the partial correla-

tions ρi,j of each pair of variables given the rest, and from these build a CIG.

From this CIG, we can derive the appropriate lag for the model VAR(p) we look to estimate

by seeing which furthest back variable one of the variables at time t is connected to. However,

to do so we must also derive the DAG structure for both the canonical and structural VAR

models, since when we moralise them we attain all possible CIGs.

Consider the canonical VAR(1) model


Xt

Yt

Zt

 =


ϕ1,1,1 ϕ1,2,1 ϕ1,3,1

ϕ2,1,1 ϕ2,2,1 ϕ2,3,1

ϕ3,1,1 ϕ3,2,1 ϕ3,3,1



Xt−1

Yt−1

Zt−1

 +


et

ft

gt

 ,

its related DAG is

Xt

Yt

Zt

Xt−1

Yt−1

Zt−1

where each link is the graphical representation of the ϕi,j,k in the canonical model. Note

that contemporaneous variables in the canonical model are not linked, since by the definition

of the canonical model, they do not effect each other.

Building upon the earlier Proposition 8, I offer an elementary implication of the structure

of the Φ1 matrix in canonical VAR(1) models on the DAG and CIG associated with it.

Remark 1. If a canonical VAR(1) model has Φ1 such that each row has at most one non-

zero elements, then the DAG associated with the canonical VAR models satisfies the Wermuth

condition. Further, its associated CIG is bipartite.

Proof. Assume we have a canonical VAR(1) model with Φ1 with no more than one non-zero

element in each row, then each variable at time t is caused by at most one anterior variable

and by consequence each variable at time t in the DAG has an indegree (the number of edges
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flowing into it) of at most one. Since no two anterior variables both cause a variable at time

t, then the Wermuth condition is satisfied by definition. The second statement then follows

directly from Proposition 8.

Example 4.3.1. Take the VAR(1) model


Xt

Yt

Zt

 =


0 ϕ1,2,1 0

ϕ2,1,1 0 0

0 0 ϕ3,3,1



Xt−1

Yt−1

Zt−1

 +


et

ft

gt



with Φ1 =


0 ϕ1,2,1 0

ϕ2,1,1 0 0

0 0 ϕ3,3,1

. Using this sparse Φ1 matrix, we can construct the

following DAG using the same method as described above.

Xt

Yt

Zt

Xt−1

Yt−1

Zt−1

This clearly satisfies the Wermuth condition, since no two anterior variables both cause

the same posterior variable, and thus the associated CIG is determined simply by exchanging

directed edges with undirected edges, since no demoralisation is necessary. The resulting CIG

is clearly bipartite.

In a structural VAR model, however, dependence between contemporaneous variables is

allowed for. For example, take the structural VAR model


Xt

Yt

Zt

 =


0 0 0

ϕ2,1,1 0 0

0 ϕ3,2,1 0



Xt

Yt

Zt

 +


ϕ1,1,2 ϕ1,2,2 0

0 ϕ2,2,2 0

0 0 ϕ3,3,2



Xt−1

Yt−1

Zt−1

 +


et

ft

gt

 .

This may be represented by the following DAG, where some contemporaneous variables are

linked.
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Xt

Yt

Zt

Xt−1

Yt−1

Zt−1

Figure 4.1: The DAG associated with the SVAR above

From this DAG, we understand the causal relationships between the variables in our model.

We can also gain insight into the broader conditional independence of the variables by com-

puting its associated CIG as described earlier in this paper. Moralising the DAG, adding links

between mutual parents of a node at time t, we obtain its related CIG as follows.

Xt

Yt

Zt

Xt−1

Yt−1

Zt−1

Figure 4.2: The moralised CIG associated with the DAG

Knowing the CIG of an autoregressive model is valuable for us when we wish to remove

moral edges and compare possible different DAG models. Note that in the example given

above, our true DAG associated with the VAR model includes the edge from Yt−1 to Xt which

is a moral edge. Removing this edge in the demoralisation process would be wrong. In the

following subsection we will look at an example where we start with a CIG estimated from

simulated data and, by removing potentially moral edges iteratively, we compare all possible

DAGs given our a priori knowledge of the data to determine which are congruent. Fitting

these models to data and comparing them using penalised likelihood methods, we can deter-

mine which VAR model, and thus which combination of moral edges, fits our data best. This

will show us which moral edges we should remove, and those we should not.
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In order to find a DAG associated with the CIG of a VAR model, we need only to consider

the links to the variables at time t. We must first ascertain all possible combinations of directed

edges between the variables at time t. In the CIG above, these are as follows.

Xt

Yt

Zt

Xt

Yt

Zt

Xt

Yt

Zt

Xt

Yt

Zt

Figure 4.3: Different combinations of contemporaneous directed edges.

Taking each of these in turn, we determine which of the edges in the associated DAG could

be a result of moralisation, knowing that edges connecting anterior variables (variables that

occur further back in time) effect more recent variables given the passing of time. We then

consider all possible combinations of moral edges in these DAGs and fit the model to our data,

calculating their associated BIC and AIC whose definitions below are adapted from Strimmer

(2021).

Definition 4.3.1. The Bayesian Information Criterion (BIC) for a model with K parameters

and n observations is defined as

BIC = −2 logL+K log(n)

where L is the maximised likelihood function of the model. Similarly, the Akaike Information

Criterion (AIC) is defined as

AIC = −2 logL+ 2K.

We may determine which models fit the data best from these criteria.

An upper bound for the number of combinations we will need to check can be found.

Knowing that a cycle of length three in the CIG associated with a VAR model may have an

edge caused by moralisation, let n be the number of such cycles in the CIG. Then for each
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combination of edges connecting contemporaneous variables, see Fig. 4.3, we have at most 2n

different combinations of moral edges in the graph, and thus at most 2n possible DAGs to fit

for that initial combination of contemporaneous edges.

In the following subsection, we look to apply the theory developed over the course of this

paper to simulated data.

4.3.1 Worked Example with Simulated Data

We will now simulate data for the structural VAR(2) model

 1 0

0.5 1


yt
xt

 =

 0.5 0

−0.2 0.6


yt−1
xt−1

 +

0.25 0.5

0.1 0


yt−2
xt−2

 +

εyt
εxt



where the εxt, εyt
i.i.d∼ N(0, 1), using R. The true DAG associated with this model is

yt

xt

yt−1

xt−1

yt−2

xt−2

Our simulated data will have the values of yt and xt at each time period t, and by looking

back we build lagged variables yt−1, xt−1, yt−2, xt−2, yt−3, xt−3. Each of these becomes a

variable in our graphical model. We will use the simulated data to estimate the partial cor-

relations between each two variables given the rest, and using these partial correlations and

a threshold by which we judge significance, build a CIG of our model. Once we have the

CIG, we will find the equivalent DAGs and find the most parsimonious model with the highest

log-likelihood to represent our data, using Bayesian and Akaike Information Criteria. We will

then compare this resulting DAG with the true DAG given above, and see if they are the same.

In R, we first define the coefficient matrices of our model in order to generate data as

follows.

set.seed (234)
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# Number of time series observations

tt <- 1000

# Structural coefficients

Phi <- diag(1, 2)

Phi[lower.tri(Phi)] <- c(0.5)

# Coefficient matrices

Phi1 <- matrix(

c(0.5, -0.2, 0, 0.6), nrow=2, ncol=2

)

Phi2 <- matrix(

c(0.25 , 0.1, 0.5, 0), nrow=2, ncol=2

)

We will now turn our structural model into the canonical form

Φ0
−→
X t = Φ1

−→
X t−1 + Φ2

−→
X t−2 +−→ε t

⇒
−→
X t = Φ∗1

−→
X t−1 + Φ∗2

−→
X t−2 +−→ε ∗t

with Φ∗i = Φ−10 Φi and −→ε ∗t = Φ−10
−→ε t.

# Structural matrices

Phi1.star = solve(Phi)%*%Phi1

Phi2.star = solve(Phi)%*%Phi2

# Generate series

series <- matrix(0, 2, tt + 1)

for (i in 3:(tt + 1)){

series[, i] <- (

Phi1.star%*%series[, i-1] +

Phi2.star%*%series[, i-2] +

solve(Phi)%*%rnorm(2, 0, 1)

)

}

series <- tail(series , n=tt)

series <- ts(t(series )) # Convert to time series object
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dimnames(series )[[2]] <- c("y", "x") # Rename variables

We now have the values of our process for 1,000 time periods. We can visualise the final

100 of these as follows.

We now look to calculate the partial correlations between variables using the Inverse Vari-

ance Lemma described earlier. We will include variables going back to time period t − 3 to

show that our model will recognise that this process is indeed of order 2, and not 3.

# Build design matrix

X.t = cbind(series[,"y"], series[,"x"])

X = X.t

for (i in 1:3) {

temp = stats ::lag(X.t, i)

X = cbind(temp , X)

}

colnames(X) <- c("y.t", "x.t", "y.t1", "x.t1", "y.t2", "x.t2", "y.t3", "x.t3")

X <- X[complete.cases(X),]

# estimate the covariance matrix

S = cov(X)

# derive the precision matrix

Omega = solve(S)

# calculate partial correlations of observations with the inverse variance lemma

pcor <- function (Omega , i, j) {

return(-(Omega[i,j])/(sqrt(Omega[i,i] * Omega[j,j])))
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}

pcor.list <- c()

for (i in 1:nrow(Omega)) {

for (j in 1:ncol(Omega)) {

part.cor <- pcor(Omega , i, j)

pcor.list = c(pcor.list , part.cor)

}

}

pcor.mat <- matrix(pcor.list , nrow=nrow(Omega ))

diag(pcor.mat) = -diag(pcor.mat)

which returns the following partial correlations between variables.

yt xt yt−1 xt−1 yt−2 xt−2 yt−3 xt−3
yt 1
xt -0.4507 1
yt−1 0.2710 -0.1332 1
xt−1 0.2291 0.5297 -0.2773 1
yt−2 0.2522 0.1098 0.1968 -0.1839 1
xt−2 0.3561 0.0075 0.0469 0.4134 -0.3489 1
yt−3 -0.0143 -0.0239 0.2442 0.1042 0.3553 -0.1468 1
xt−3 0.0120 -0.0229 0.3992 0.0169 0.2362 0.4137 -0.4647 1

We need to calculate the threshold by which we measure statistical significance of partial

correlation. Using the link between partial correlation and t-statistics discussed before, we

calculate the critical quantile for the Student’s t distribution at the α = 0.05 significance level,

which we denote t, and from this calculate the critical correlation coefficient via

rcritical =
t2

t2 + υ

where υ is the residual degrees of freedom. In R, this is implemented as follows.

critical.r <- function(n, alpha = 0.01) {

df <- n - 2

critical.t <- qt(alpha/2, df, lower.tail = FALSE)

critical.r <- sqrt( (critical.t^2) / ( (critical.t^2) + df ) )

return( critical.r )

}

crit.r = critical.r(nrow(X))

from which we find that rcritical = 0.0621. Taking the most statistically significant partial
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correlations between variables as edges, we build the following CIG.

yt

xt

yt−1

xt−1

yt−2

xt−2

Since we are dealing with time series data, we have the a priori knowledge that the present

cannot affect the past. Using this knowledge we restrict ourselves to the following two DAG

possibilities.

yt

xt

yt−1

xt−1

yt−2

xt−2

(a) Model A

yt

xt

yt−1

xt−1

yt−2

xt−2

(b) Model B

In model A, the edge connecting xt and yt flows from yt to xt, and in model B it flows the

opposite way. These two models will serve as our more explicative models. That it, they are

the most complex models we will work with, that explain more of the variation in our data

with more dependencies than the more parsimonious we will achieve through demoralisation.

Using the definition of moralisation, we can consider three remarks, given in Reale (1998), to

help us determine which of these edges may or may not be moral in order to achieve some

more parsimonious models.

1. If a node has only one outward edge, it is not a moral edge because in order for it to be

moral two parents are required, and each parent needs at least two outward edges.

2. If a node has multiple outward edges, at least one is not a moral edge.

3. If a node has no outward edges, then none of its incoming edges is moral.

From these criteria, we identify three edges in each of the two models that may be moral.

These edges are coloured red in the diagram below.
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yt

xt

yt−1

xt−1

yt−2

xt−2

(c) Model A with potentially moral edges
coloured red

yt

xt

yt−1

xt−1

yt−2

xt−2

(d) Model B with potentially moral edges
coloured red

We thus have 8 possible combinations of these potentially moral edges per combination

which we investigate in turn to make 8 different DAGs per model, 16 DAGs in total. Once we

have made these DAGs, we will look to discount those that are incongruent with the assump-

tions of our VAR model, and select the best option from the remaining models.

We will begin by enumerating all such possibilities for Model A, numbering them from 1

to 8, in Figure 4.4, and then repeating the process for Model B in Figure 4.5.
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yt

xt

yt−1

xt−1

yt−2

xt−2

Model A (1).

yt

xt

yt−1

xt−1

yt−2

xt−2

Model A (2).
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Figure 4.4: Possible DAGs from Model A
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Figure 4.5: Possible DAGs from Model B
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We note that Model B (8) is incongruent with the assumptions of our VAR, as xt is no

longer caused by any anterior variables, while still causing the contemporaneous yt. This is

clearly impossible, and we thus discount it.

For the remaining 15 DAG possibilities, we estimate a VAR of order 2 on the data including

only those variables included in the DAGs using the vars R package (Pfaff, 2008b) in order to

measure the performance of the models in turn. We will use as metrics, the Bayesian Informa-

tion Criterion and Akaike Information Criterion.

Once we have calculated the BIC and AIC of all models, we will chose the model with the

lowest of both if possible, otherwise we will consider BIC more than AIC when choosing the

most appropriate DAG. By construction, as the number of observations grows, so too does

the set of models AIC deems to be suitable, whereas the opposite is true for BIC where the

number of suitable models decreases with the number of observations. Below are the BIC and

AIC of each of the models.

Model A Model B

Model Number BIC AIC BIC AIC

1 5754.791 5720.443 5754.791 5720.443
2 6034.646 6005.206 6129.215 6099.775
3 5745.673 5716.233 6020.609 5991.168
4 5797.822 5768.381 5759.04 5729.599
5 6081.738 6057.204 6425.187 6400.653
6 5784.665 5760.131 6054.971 6030.437
7 6288.89 6264.356 6140.522 6115.988
8 6534.093 6514.466 Discounted

Table 4.1: The BIC and AIC for all 16 possible DAGs emerging from the empirical CIG.

From this, we find that Model A (3) has the lowest BIC and AIC. The next best model is

the full model, that is the model with none of the potentially moral edges removed. We are

working with a large number of observations in this dataset, and since we will always favour

the more parsimonious model, we take Model A (3) as the best model for the data. Reminding

ourselves what this model looks like, we find that it is indeed the true model of our DAG

presented at the beginning of the example.

We may thus conclude that on these simulated data, our graphical modelling technique was

able to identify not only the correct lag in the model, but also the correct causality relationships
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between variables. Note that just because an edge is “moral”, does not mean that it is not

included in the correct model, as seen in Figure 4.1. In fact, the true model for this data gen-

erating process, includes the moral edge from yt−1 to yt. This graphical model approach was

able to identify that indeed this edge was significant, and that it was included in the final model.

We will now endeavour to show that the success of this method extends to real-life data,

in the form of Standard and Poor’s Index returns.



Chapter 5

Application to Econometrics

Much of the literature surrounding autoregressive models is applied to econometrics. In order

to render this paper relevant, we will demonstrate how our methodology can be applied to

financial data.

5.1 Worked Example with Financial Data

In order to apply this methodology to a financial case study, we first consider the index prices

of the Standard and Poor’s 500 Index, Bond Index, and GCSI index over the past five years,

plotted below.

This is clearly not a stationary process, so in their current state these data cannot be used.

We thus take the log of the returns of the three indices, plotted below, and find that this

51
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process is indeed stationary. These are the natural logarithms of the changes in the index price

from one day to the next.

We will now consider these log returns as variables in our stochastic process representing

a portfolio, and look to determine the underlying relationship between them. We will first

estimate the sample covariance matrix of the observed log returns of these indices over the

past five years, and from this compute the partial correlations between lagged and contem-

poraneous variables. Then calculating a critical correlation coefficient we will build a CIG.

From this CIG, we impute all possible DAG structures of the variables. Fitting each VAR

model associated with these DAGs to data and calculating their respective BIC and AIC, we

will finally conclude the best fitting VAR model for our process. The R code necessary for

these calculations is more or less identical to that used in the previous worked example, and

so is omitted in the interest of space, although the main functions can be found in McLatchie

(2020). We remove all time periods with null data since, given the amount of data available,

our model will likely converge despite these missing data.

We run our analysis using five lagged variables, and find that when we do, our model only

find four of them to be statistically significant. Our model will thus make use of the first

four lagged variables. The sample covariance matrix of our data leads to the following partial

correlation matrix.
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it bt ct it−1 bt−1 ct−1 it−2 bt−2 ct−2 it−3 bt−3 ct−3 it−4 bt−4 ct−4 it−5 bt−5 ct−5

it 1
bt -0.028 1
ct 0.435 0.009 1
it−1 -0.222 0.216 0.094 1
bt−1 0.075 0.195 -0.077 -0.051 1
ct−1 0.063 0.063 -0.049 0.410 -0.008 1
it−2 0.087 0.089 0.004 -0.214 0.189 0.082 1
bt−2 0.127 0.089 -0.027 0.080 0.163 -0.088 -0.070 1
ct−2 0.032 0.035 0.010 0.065 0.058 -0.053 0.381 -0.016 1
it−3 -0.03 0.075 -0.001 0.056 0.078 0.003 -0.218 0.184 0.079 1
bt−3 0.042 0.03 -0.06 0.124 0.081 -0.029 0.051 0.156 -0.069 -0.069 1
ct−3 0.091 0.074 -0.012 0.036 0.013 -0.001 0.057 0.040 -0.063 0.375 -0.026 1
it−4 -0.145 0.006 0.134 -0.068 0.087 0.015 0.044 0.092 0.019 -0.221 0.209 0.083 1
bt−4 -0.086 0.011 0.040 0.013 0.033 -0.050 0.106 0.092 -0.009 0.045 0.180 -0.068 -0.061 1
ct−4 -0.027 0.012 0.028 0.081 0.072 -0.012 0.035 0.016 0.003 0.054 0.043 -0.060 0.367 -0.030 1
it−5 0.049 0.009 -0.025 -0.146 -0.007 0.142 -0.041 0.086 -0.021 0.048 0.070 0.024 -0.228 0.213 0.083 1
bt−5 -0.047 -0.029 0.039 -0.089 0.018 0.052 -0.036 0.050 -0.002 0.100 0.139 -0.002 0.070 0.232 -0.063 -0.095 1
ct−5 -0.035 0.032 0.039 -0.034 0.012 0.023 0.075 0.070 -0.006 0.030 0.020 -0.001 0.044 0.038 -0.062 0.355 -0.039 1
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Calculating the critical partial correlation coefficient similarly to in the worked example,

we find that

rcritical =
t2

t2 + υ
= 0.073.

Using this, we build the following CIG.
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Using once more the a priori knowledge that the present cannot effect the past, we find

that there are only two possible contemporaneous structures.

it

bt

ct

it

bt

ct

Unfortunately, we have no further a priori knowledge that can restrict these choices further.

We will call the model on the left, with edge flowing from it to ct, Model A, and the model on

the right, Model B. We equally identify that in Model A, the edges from it−1 to ct, bt−1 to ct,

and it−4 to ct are all potentially moral edges. In Model B, edges it−1 to it, bt−1 to it, and it−4

to it are potentially moral.

Enumerating all possible combinations of moral edges for Model A, we have the following
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DAGs shown in Figure 5.1. We may immediately discount Model A (8), since ct is not caused

by any anterior variables, although still causes it. For Model B, we have the following possi-

bilities shown in Figure 5.2.

Fitting each of these models to data, we achieve the following BIC and AIC scores for each.

Model A Model B

Model Number BIC AIC BIC AIC

1 -26012.22 -26094.27 -26012.22 -26094.27
2 -26017.82 -26094.73 -25940.2 -26017.12
3 -26017.96 -26094.88 -26014.88 -26091.8
4 -26002.36 -26079.28 -25998.03 -26074.94
5 -26023.63 -26095.42 -25943.36 -26015.15
6 -26008 -26079.79 -25924.7 -25996.49
7 -26009.3 -26081.08 -26002.87 -26074.66
8 Discounted -25929.96 -25996.62

We conclude by choosing model A (5) as the best fitting model. The intuition drawn from

this model, where price increases in the commodity futures market cause a price increase in

the S&P 500 is that the change of commodity prices thus impacts the corporations’ operations.

This relationship is positively correlated, as shown in the partial correlation table, which may

suggest that there are more commodities producers than consumers in the index, and thus an

increase in commodities prices positively impacts their valuation.
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Figure 5.1: Possible DAGs from Model A
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Figure 5.2: Possible DAGs from Model B
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Conclusion

We have thus demonstrated how graphical models can be used to determine the order of an

autoregressive model on multivariate time series, as well as the causal relationships between

variables. Using this information, we were able to determine the best VAR model for the data

from its associated DAG. In order to achieve this result, we discussed how we build a CIG

from the sample covariance matrix of a lagged variables using the Inverse Variance Lemma,

and how we demoralise this resulting CIG iteratively in order to determine which moral links

are necessary in our final DAG model.

We have shown through a worked example on simulated data that this methodology, while

being expensive when we have many potentially moral edges in our graph, is able to determine

with confidence the best performing model for data from a starting set of possible models.

Using data from Standard and Poor’s indices, we showed how this methodology can be applied

to real-world cases.

The primary result of this report has been to show how we can use graphical models to

reveal contemporaneous and noncontemporary dependencies between variables, and from these

determine an initial set of possible models in a time efficient manner. The iterative fitting

of DAGs with all possible combinations of moral edges, an innovation on the methodology

provided in Reale (1998), allowed us to find the best model using penalised liklihood methods.
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6.1 Further Work

Given more time, the methodology followed in this paper could be written into code, and

eventually fully automated. My attempt at this can be found in McLatchie (2020).
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