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Selection-induced bias

Suppose that we choose the model with the highest LOO-CV
elpd point estimate from a collection of K candidate models,

j* = arg max eT};iLOO (M | y), )
k=1,...K

and define selection-induced bias concretely as

bias(My, ..., M | y) = elpd, ., (M} | y) —elpd (M;- | y). (2)



Bias grows with K

Simulate n = 100 data points sampled from

y=XB+e 3)
€ ~ normal(0, (721), 2=1- ﬁi 4)
5: (l/lBA/O""/O)/ (5)

Compare K — 1 one-predictor models of the form

My : y;i | B1, Br, T ~ normal(B1 + X; xBk, T2), (6)

to baseline model: My, : y; | B1, T ~ normal(B1, T2).



Bias grows with K
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Our proposal: modelling the elpd difference

Suppose we have K models, which we compare by elpd:
1. fit a half-normal distribution to the upper-tail of K elpd
difference point estimates;
2. estimate its standard deviation by MLE, 0k;
3. compute the expected maximum from K
equally-un-predictive models using the maximum order

statistic,
S ) a—K ’ (3)

where, for X; ~ normal(0, 1)

sK = E [max X; 4)

1<i<K } '



Our proposal: modelling the elpd difference
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Bias compounds in forward search
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Correcting bias in forward search

We correct for bias along the search path according to:

% Aclpd”) —bias", if |Aelpd . | < S®g
Aelpdcorrected = — (k)
Aelpd, ., otherwise.

3)

We produce an estimate of selection induced bias, denoted

—— (k
bias( ), building on our order statistics-based heuristic:

bias ) = 1.5 x s®g. (4)



Simulated experiment

Simulate for p = 100 predictors:

x ~ normal(0,R) (5)

y Nnormal(wa, 2), (6)

where the matrix R € RP*?is 5 x 5 block diagonal, having
within-block correlation p = {0,0.9}. Only the first 15 predic-
tors influence the target y: (w15, we.10, w1115) = (&,0.5¢,0.25¢8),
and zero otherwise. Set ¢ = 0.59 and ¢? = 1 to fix R? = 0.7.
We simulate n = {100,200,400} data points according to this
data-generating process (DGP).



Simulated experiment
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Simulated experiment

R2D2 priors:
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Real-world experiments

Normal prior

Sparsity-inducing prior
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Real-world experiments

R2D2 priors in red; Gaussian priors in black.
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Recommendations

1. In the two-model case: if the models are not nested,
combine them by model averaging or stacking; ensure the
models’ respective priors are reasonable (goes for all
scenarios) and select the more complex of the two; or, keep
them both as a set of best models.

2. In the many-model case: all of the recmmendations above,
and test for clearly predictive models using order statistics
S oy

3. In forward search: first try projpred if the model space is
large and the observation family allows efficient projection,
otherwise LOO-CV forward search can be useful, and we
can correct for selection-induced bias in an online fashion.



